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Abstract— Objective: False positive reduction is one of
the most crucial components in an automated pulmonary
nodule detection system, which plays an important role
in lung cancer diagnosis and early treatment. The objec-
tive of this paper is to effectively address the challenges
in this task and therefore to accurately discriminate the
true nodules from a large number of candidates. Methods:
We propose a novel method employing three-dimensional
(3-D) convolutional neural networks (CNNs) for false pos-
itive reduction in automated pulmonary nodule detection
from volumetric computed tomography (CT) scans. Com-
pared with its 2-D counterparts, the 3-D CNNs can encode
richer spatial information and extract more representative
features via their hierarchical architecture trained with 3-
D samples. More importantly, we further propose a simple
yet effective strategy to encode multilevel contextual infor-
mation to meet the challenges coming with the large varia-
tions and hard mimics of pulmonary nodules. Results: The
proposed framework has been extensively validated in the
LUNA16 challenge held in conjunction with ISBI 2016, where
we achieved the highest competition performance metric
(CPM) score in the false positive reduction track. Conclu-
sion: Experimental results demonstrated the importance
and effectiveness of integrating multilevel contextual infor-
mation into 3-D CNN framework for automated pulmonary
nodule detection in volumetric CT data. Significance: While
our method is tailored for pulmonary nodule detection, the
proposed framework is general and can be easily extended
to many other 3-D object detection tasks from volumetric
medical images, where the targeting objects have large vari-
ations and are accompanied by a number of hard mimics.

Index Terms—Computer-aided diagnosis, deep learning,
false positive reduction, pulmonary nodule detection, 3-D
convolutional neural networks.
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I. INTRODUCTION

UTOMATED detection of pulmonary nodules in volumet-
A ric thoracic computed tomography (CT) scans plays an im-
portant role in computer-aided lung cancer diagnosis and early
treatment [1]-[3]. The pulmonary nodules are radiologically
visible as small structures that are roughly spherical opacities
within the pulmonary interstitium images [4]. They have been
regarded as crucial indicators of primary lung cancer, which has
been the leading cause of cancer death in recent years [5]. Based
on reliable detection of lung nodules, radiologists and surgeons
can perform size measurements and appearance characteriza-
tions for cancer malignancy diagnosis [6] and, if necessary,
timely surgical intervention in order to increase the survival
chances of patients [7], [8].

An automated pulmonary nodule detection system mainly
consists of two steps: 1) candidate screening and 2) false pos-
itive reduction. In candidate screening, a considerable number
of coarse candidates are rapidly screened throughout the whole
volume using a variety of criteria, e.g., intensity thresholding,
shape curvedness, and mathematical morphology [3], [9], [10].
In false positive reduction, effective classifiers together with
discriminative features are developed to reduce a large number
of false positive candidates. In order to maintain a high sen-
sitivity in candidate screening, the criteria employed in this
step are usually quite straightforward and lenient, and con-
sequently a great number of candidates are selected out and
forwarded to the second step. In this regard, the false posi-
tive reduction stands as the most crucial component of an au-
tomated pulmonary nodule detection system [1] and a lot of
efforts have been dedicated to improving the performance of
this step.

Automated identification of the pulmonary nodules from tho-
racic CT scans is, however, among the most challenging tasks
in computer-aided chest radiograph analysis [11] for at least
the following two reasons. First, the pulmonary nodules have
large variations in sizes, shapes, and locations, as shown in the
green rectangle in Fig. 1. Moreover, the contextual environ-
ments around them are often diversified for different categories
of lung nodules, such as solitary nodules, ground-glass opacity
nodules, cavity nodules, and pleural nodules [12]. Second, some
false positive candidates carry quite similar morphological ap-
pearance to the true pulmonary nodules, as shown in the red

0018-9294 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Examples of the pulmonary nodules with various sizes, shapes,
and locations (green rectangle), and the false positive candidates (red
rectangle) which carry similar appearance and make the task challeng-
ing. Each example is a representative 2-D transverse plane extracted
from a location.

rectangle in Fig. 1. The existence of these hard mimics would
heavily hinder the detection process.

Many research works have devoted efforts in developing ef-
ficient and robust false positive reduction algorithms in order
to meet the aforementioned challenges. Some of them endeav-
ored to design representative features for pulmonary nodules by
combining a set of discriminative characteristics of the nodules.
For examples, Messay et al. [8] designed a set of shape, po-
sition, intensity, and gradient features from segmented nodule
candidates, and achieved a detection sensitivity of 82.66% with
an average of three false positives per scan. Jacobs et al. [3]
employed features based on the intensity, shape, texture charac-
teristics, and incorporated contextual information in respect to
some surrounding anatomical structures. This method achieved
a detection sensitivity of 80% with 1.0 false positive per scan.
Unfortunately, these hand-crafted features tend to suffer from
limited representation capability and are insufficient to deal with
the large variations of lung nodules.

Recently, with the remarkable successes of deep convolu-
tional neural networks (CNNs) in image and video process-
ing [13]-[16], the representation capability of the high-level
features which are learned from large amounts of training
data has been broadly recognized. This also inspired some
researchers to employ CNNs in automated pulmonary nodule
detection. In a recent work, Setio et al. [17] proposed to em-
ploy two-dimensional (2-D) multiview convolutional networks
to learn representative features for pulmonary nodule detection.

This method can incorporate relatively wide volumetric spatial
information for detection by extracting many 2-D patches from
differently oriented planes. Superior to those works employing
low-level hand-crafted features, this method achieved a state-
of-the-art detection sensitivity of 85.4% at 1.0 false positive per
subject on the benchmark of Lung Image Database Consortium—
Image Database Resource Initiative (LIDC-IDRI) [11] dataset,
demonstrating the effectiveness of convolutional networks on
this task. However, this 2-D CNNs based solution still could
not take full advantage of 3-D spatial contextual information
of pulmonary nodules to single them out from hard mimics
and complicated environments. After all, detecting pulmonary
nodules from volumetric CT scans is, in essence, a 3-D object
detection problem.

From a broader perspective, while 2-D CNNs have wit-
nessed many fruitful applications in medical image analysis
field in recent years [18]-[20], 3-D CNN is still in its in-
fant stage in medical applications even though 3-D medi-
cal data are quite common and popular in clinical practice.
Just a few 3-D variants of CNNs have been very lately pro-
posed for medical image computing [21]-[25]. As alternatives,
some variants of 2-D CNNs attempted to exploit sequentially
adjacent slices [26]; orthogonal planes [27] or multiview
planes [17] to aggregate more 3-D spatial information in the
network. However, due to the nature of 2-D network architec-
ture, it is difficult for these solutions to sufficiently encompass
3-D spatial information within volumetric data into the model.

In this paper, we propose a novel framework on top of 3-D
CNN s for false positive reduction in automated pulmonary nod-
ule detection from CT images. By taking full advantage of the
3-D spatial information, our method can learn representative fea-
tures with higher discrimination capability than those learned
from 2-D CNNs. To the best of our knowledge, this is a pioneer
work that exploits 3-D CNNs for pulmonary nodule detection
in volumetric CT scans. To deal with the large variations of pul-
monary nodules and more robustly distinguish them from their
hard mimics, we further propose to consider multilevel contex-
tual information around pulmonary nodules by integrating a set
of 3-D CNNs with different sizes of receptive field. Experiments
performed on a large-scale benchmark dataset demonstrate the
effectiveness of the 3-D CNNs as well as the multilevel contex-
tual information integration strategy for improving the detection
accuracy.

Our main contributions can be summarized as:

1) We propose a novel method to exploit 3-D CNNss for pul-
monary nodule detection in volumetric CT scans; com-
pared with their 2-D counterparts, the 3-D CNNs can
encode richer spatial information and extract more dis-
criminative representations via the hierarchical architec-
ture trained with 3-D samples;

2) Considering the complicated anatomical surrounding en-
vironments of pulmonary nodules, we propose a simple
yet effective strategy to encode multilevel contextual in-
formation to meet the challenges coming with the large
variations and hard mimics of pulmonary nodules;

3) We validated our proposed framework on the LUNA16
challenge held in conjunction with ISBI 2016. Our
team achieved the highest score in the false positive
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Framework of the proposed method. We design three 3-D convolutional networks incorporating different levels of contextual information.

The posterior predictions of these networks are fused to produce the final classification result.

reduction track, corroborating the outstanding efficacy
of our method.

The remainder of this paper is organized as follows. We de-
scribe our method in Section II and report the experimental
results in Section III. Section IV further discusses some key
issues of the proposed method. The conclusions are drawn in
Section V.

Il. METHODOLOGY

The proposed multilevel contextual 3-D CNNs framework for
false positive reduction in automated pulmonary nodule detec-
tion is illustrated in Fig. 2. We develop three 3-D convolutional
networks, each encoding a specific level of contextual informa-
tion. The final classification results are obtained by fusing the
probability prediction outputs of these networks.

A. Construction of 3-D CNNs

In general, each 3-D convolutional network consists of 3-D
convolutional, 3-D max-pooling, and fully-connected layers to
hierarchically extract representations (also called features) and
a softmax layer for the final regression to probabilities. Each
layer contains a number of channels, and every channel en-
codes a different pattern. For 3-D CNN, each channel in the
convolutional/max-pooling layer is actually a 3-D feature vol-
ume, rather than a 2-D feature map in conventional CNNs. The
3-D feature volume includes a group of neurons structured in a
cubic manner.

1) 3-D Convolutional Layer: To construct a 3-D con-
volutional layer, we first establish a set of small 3-D feature
extractors (or usually called kernels), which sweep over their
input (i.e., the output of the previous layer) to extract a stack of
higher-level representations. In order to generate a new feature
volume, we use different 3-D kernels to convolve different input
feature volumes (each feature volume corresponding to a unique
3-D kernel). Then, we add a bias term, and employ a nonlinear

activation function. We formulate the 3-D convolutional layer
in an element-wise manner as follows:

hi(w,y,2) =

bl—l-z Zhllx—uy v, 2 — W)W (u,v,w)| (1)

u,v,w

where h! and h! ! represent the ith 3-D feature volume in the
[th layer and the k-th 3-D feature volume in the previous layer,
respectively; W{(i € R? is the 3-D convolutional kernel con-
necting h! and h;’l; hl(z,y,2), hlk’l (r—u,y—v,z—w), and
W, (u,v,w) represent their element-wise values with (z, v, 2)
being the coordinates of k! and (u, v, w) being the coordinates
of the 3-D kernel Wi ; the b! is a bias term; and o (+) is the non-
linear activation function, i.e., the rectified linear units (ReLLU)
(o(a) = max(0, a)) [28]. Note that activations from different
3-D kernels should be summed up before adding the bias term;
the summation over k in (1) means the summation of activations
from different 3-D kernels.

2) 3-D Max-Pooling Layer: In-between successive 3-D
convolutional layers, we periodically insert 3-D max-pooling
layers to subsample the 3-D feature volumes, and therefore ac-
quiring invariance to local translations in 3-D space. Assuming
that the [th layer is a convolutional layer and the (I+1)th layer is
the 3-D max-pooling layer following it, the max-pooling layer
accepts a 4-D tensor T=[h! h}, ... hl.] € RX*¥Y*ZxE PFor
the max-pooling operation, it selects the maximum activation
within a cubic neighborhood and generates an abstracted output
T' € RXXY'*Z'XK ‘where (X,Y,Z) and (X', Y, Z') are the
sizes of feature volumes before and after the max-pooling op-
eration, respectively; K denotes the number of feature volumes
which remains unchanged during the pooling operation. Given
the pooling kernel size of M and stride of .S, the size of fea-
ture volumes is reduced as X' = (X —M)/S + 1 (same for Y’
and 7').
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3) Fully Connected Layer: In fully connected layers,
the neurons have much denser connections than those of convo-
lutional layers. Specifically, each neuron is connected with all
neurons in adjacent layers. This is different from the local con-
nection style equipped in the convolutional layers. These dense
connections can benefit stronger representation capability of
the extracted representations. To implement the fully connected
layer, we first flatten the feature volumes into a neuron vec-
tor, next perform a vector-matrix multiplication, then add a bias
term to it, and finally apply a nonlinear function to generate the
activations as follows:

h' =o® + W/ n/) 2)

where the h/ ! is the input feature vector obtained by flattening
the 3-D feature volumes of the (f — 1)th layer; h/ is the output
feature vector of the fth layer, which is a fully connected one;
W/ is the weight matrix; b’ is the bias term; and o (-) is the
ReL.U [28].

4) Softmax Layer: The output layer of the 3-D CNN is the
softmax layer. Denoting the neuron vector in the last layer by h”
and C'is the number of target classes, we calculate the prediction
probability for each class c via the softmax regression p.(h*) =
exp(ht)/ ZC o exp(hl), where h is the cth element of the
neuron vector. The output activations of the softmax layer are all
positive values within the interval (0, 1) and summed up to one.
As a result, they can be interpreted as the estimated probability
distribution predicted by the network.

5) Cost Function: Given a set {(Z(1), Y1), ... (TN,

(M)} of N paired 3-D training samples, where Z\/) is an
input cubic patch and YY) is the corresponding ground-truth
label, Y9 is the predicted label; representing all the trainable
parameters in 3-D CNNs by 6, we construct the following cost
function:

B N C-1
72 2 {YV=ctlog PV =c|TV:0) (3)
7:1 c=0
where 1{-} denotes the indicator function; P(Y/)=c¢|Z(); 9)

is the estimated probability of sample Z(/) belonglng to class
¢, which is exactly the output value p.(h*) from the softmax
regression layer. The parameters in 3-D CNNs are optimized by
minimizing the loss £(0).

B. Importance of Receptive Field

The pulmonary nodules have large variations regarding the
volume sizes (with diameter ranging from 3 to 30 mm), shapes,
and many other characteristics, such as subtlety, solidity, in-
ternal structure, spiculation, sphericity, etc. [11]. In addition,
the nodules often come with complicated contextual environ-
ments and hard mimics. To deal with these challenges, a batch
of previous works employed features meticulously designed
for a specific class of nodules for discrimination and detection
[9], [29], [30]. Although these methods have achieved encourag-
ing results in detecting specific lung nodules from CT scans, the
flexibility and extensibility of these methods were quite limited,
as the features tailored for a kind of nodules are often not suit-
able for other types of nodules with different characteristics and
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Fig. 3. Distribution analysis of the sizes of pulmonary nodules for de-

termining receptive fields, with diameters measured in voxels across
different dimensions. (Note: X and Y dimensions have the same
resolution.)

contextual environments. In addition, the discrimination capa-
bility of these hand-crafted features are usually insufficient for
differentiating lung nodules from their hard mimics in complex
environments. Leveraging the strong discrimination capability
of 3-D CNNs, we propose to detect various types of nodules un-
der a unified framework, which is able to learn the parameters
in a data-driven way, and produce accurate detection results
based on the learned high-level representations.

In 3-D CNNs for pulmonary nodule detection, cubic samples
centering on the interested candidate positions are input to the
networks to train their discrimination capacity. The size of the
cubic samples, i.e., the surrounding range of a target position,
is called the receptive field of a network. The size of recep-
tive field plays a crucial role for the recognition performance
of a network. In other words, the amount of surrounding con-
textual information considered by the network will implicitly
yet greatly influence the generated prediction probability dis-
tribution and, hence, the accuracy of the detection results. In
principle, if the size of receptive field is too small, only limited
contextual information will be exploited to train the networks
and its discrimination capability should be deficient to handle
large variations of detection targets. On the other hand, if the
receptive field is too large, more redundant messages or even
noises would be involved in the training, which would degrade
the performance of the networks, especially when the number
of training samples is quite limited. In this regard, it is diffi-
cult, if not impossible, to figure out a single optimal receptive
field for a detection target with large variations. We propose to
design a set of multilevel contextual 3-D CNNs to meet this
challenge and improve the detection performance by fusing the
results obtained from the networks learned from different levels
of contextual information.

C. Multilevel Contextual Networks and Model Fusion

We determine the sizes of receptive fields employed in our
framework by analyzing the size distribution of the pulmonary
nodules. Based on the statistical analysis in Fig. 3, we carefully
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TABLE |
ARCHITECTURES OF THE MULTILEVEL CONTEXTUAL 3-D CNNs

Archi-1 Archi-2 Archi-3
Layer Kernel Channel Layer Kernel Channel Layer Kernel Channel
Input - 1 Input - 1 Input - 1
Cl 5 x5 x3 64 Cl 5 x5 x3 64 Cl 5 x5 x3 64
Ml 1 x1x1 64 M1 2 x2x1 64 M1 2 x2x2 64
C2 5 X5 x3 64 Cc2 5 x5 x3 64 Cc2 5 X5 x3 64
C3 5 x5 x1 64 C3 5 x5 x3 64 C3 5 x5 x3 64
FC1 - 150 FC1 - FC1 - 250
FC2 - 2 FC2 - FC2
Softmax - 2 Softmax - Softmax

C: convolution, M: max-pooling, FC: fully connected.

design three networks that incorporate different levels of con-
textual information surrounding the pulmonary nodules. First,
observing that the diameter density peak of small nodules lies
in around nine voxels in dimension X and Y, and four voxels in
dimension Z, we set the first network, namely Archi-1, with a
receptive field of 20 x 20 x 6 (voxels). This receptive field is
able to encompass small-sized pulmonary nodules with proper
amount of context, and it covers 58% of all the nodules in the
dataset. Next, we design the model Archi-2 with a larger recep-
tive field as 30 x 30 x 10. This size covers the majority (85%)
of the annotated nodules, and thus it can perform well on the nor-
mal situations that most frequently happen among patients. This
window size aims to provide rich context for small nodules and
suitable amount of contextual information for the middle-sized
lesions, while for some large nodules, it can usually include
main parts of them with some marginal regions excluded. Fi-
nally, we construct the model Archi-3 with a coverall receptive
field of 40 x 40 x 26. According to our statistical analysis,
this model bounds over 99% of the nodules except for several
outliers. Under this receptive field, rich contextual information
could be provided for middle-sized lesions, taking the risk of
bringing in noisy surrounding signals to some small-sized cases.
Nevertheless, this architecture can better handle those nodules
with extremely large sizes than the other two models. The de-
tailed constructions of the three networks are shown in Table I.
In addition, Fig. 4 presents the appearance of pulmonary nod-
ules under different window sizes. It is observed that the amount
of included contextual information for nodules can be diverse
in subject to the various lesion sizes. For the small lung nodule
in Fig. 4(a), the Archi-1 is the most suitable, given that the large
patches may include noisy backgrounds [see the last row of (a)].
For the nodule with diameter of 12 mm in Fig. 4(d), the receptive
field of Archi-2 is the best with proper amount of clear context
included. For the case of Fig. 4(f), the large patch is more advis-
able for the extremely large lung nodule, especially considering
that the small patch cannot even cover the whole lesion region.

After designing the networks with different receptive fields,
given a testing nodule candidate 7;, each model will assign a
prediction probability for it. To aggregate the considered multi-
level contextual information explored by different models for the
final classification, we fuse the softmax regression outputs from
all networks. Denoting the regressed probability of Z; belong-
ing to the cth class from model Archi-1 by P, (jij =c|Z;;61)

250
2 -
2 -

@

LaLdl .

‘a

(b) (© 6

(d)

(e)

Fig. 4. lllustration of multilevel contextual information surrounding nod-
ules. The patch sizes are 20x 20 x 6, 30 x 30 x 10, and 40 x 40 x
26 for the first, second, and third row, respectively. We show the trans-
verse plane only, and all patches are scaled to the same image resolution
for clear visualization. The examples (a) and (b) are small nodules with
diameter lower than 7 mm, (c—e) are middle-sized nodules with diameter
between 9and 16 mm, (f) is a large nodule with a diameter of over 24 mm.

(analogous for Archi-2 and Archi-3), the fused posterior prob-
ability Pyygon is estimated by weighted linear combination as
follows:

IP)fusion(j)j = C‘Ij) = Z %”Pv(j}j = C|Ij;9¢)
pel1,2,3)

“)

where Pfusion(ﬁj = ¢|Z,) is the fused prediction probability of
Z; belonging to class c output by the whole framework. The
constant weights -y, were determined using grid search on a
small subset of the training data in our experiments (y; = 0.3,
Yo = 0.4, Y3 = 03)

D. Training Process

The weights 0 were learned with stochastic gradient descent,
i.e., each iteration of the parameter update was computed based
on a mini-batch of training samples. The positive and negative
samples were obtained according to the candidates with labels
provided by the challenge. We extracted patches centering on
the candidate locations with sizes of 20 x 20 x 6,30 x 30 x 10,
and 40 x 40 x 26, corresponding to the three architectures. To
deal with the severe class imbalance between the false positive
candidates and the true nodules (around 490:1 in this challenge),
translation and rotation augmentations were conducted for the
ground truth nodule positions. Specifically, we translated the
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TABLE Il
RESULTS OF THE FALSE POSITIVE REDUCTION TRACK IN ISBI LUNA16 CHALLENGE

Team Team no. CNN type 0.125 0.25 0.5 1 2 4 8 Score (CPM)
DIAG_CONVNET(arnaud.setio) [17] Tl 2-D 0.636  0.727 0792  0.844 0876 0.905 0916 0.814
iitm03(subru1603) T2 2-D 0.394  0.491 0.570  0.660 0.732  0.795  0.851 0.642
LUNA16CAD(hirokinakano) T3 2-D 0.113  0.165 0265 0465 059 0.695 0.785 0.440
LUNA16CAD(mattdns100689) T4 3-D 0.640  0.698 0.750 0.804 0.847 0.874 0.897 0.787
LungNess(bim_bam) T5 2-D 0453 0535  0.591 0.635 0.696  0.741 0.797 0.635
UACNN(ccanoespinosa) T6 2-D 0.655 0.745 0.807 0.849 0.880 0.907  0.925 0.824
CUMedVis(QiDou) (Ours) T7 3-D 0.677 0.737 0815 0.848 0.879 0.907 0.922 0.827

centroid coordinates by one voxel along each axis and rotated
90°, 180°, and 270° within the transverse plane. In total, we
obtained 0.65 million samples to train the networks. We clipped
the intensities into the interval (—1000, 400 Houndsfield Unit)
and normalized them to the range of (0, 1). The mean gray-scale
value was subtracted to adjust the distribution of training and
testing data. During the training process, The weights were ran-
domly initialized from the Gaussian distribution N(0,0.01%)
and updated with standard backpropagation [31]. The learn-
ing rate was initialized as 0.3 and decayed by 5% every 5000
iterations. We set a relatively high learning rate at the begin-
ning of the training process because we considered that the
3-D network is trained from scratch rather than fine tuned from
a pretrained model. The mini-batch size was set to 200, the
momentum [32] was set to 0.9, and the dropout [33] (rate
= 0.2) strategy was utilized in convolutional and fully con-
nected layers to improve the generalization capability of the
model. The networks were implemented in Python based on
the deep learning library of Theano [34]. The three network ar-
chitectures were independently trained and validated. It took
about 6 h to train each network using a GPU of NVIDIA
TITAN Z.

[ll. EXPERIMENTS
A. Dataset and Candidate Generation

We evaluated the proposed approach on a large-scale bench-
mark dataset, which was released by the LUNA16 Challenge
held in conjunction with ISBI 2016. We participated in the
false positive reduction track, in which participants were asked
to, given a set of candidate locations, assign each candidate a
probability for being the pulmonary nodule.

The challenge filtered out 888 CT scans from the publicly
available LIDC dataset [11]. The volumes were with resolu-
tion in the transverse plane as 512 x 512, element spacing as
0.74 x 0.74mm?, and variable slice thickness but not larger
than 2.5 mm. The annotations of lung nodules were collected
with a two-phase manual labeling process conducted by four
experienced thoracic radiologists. During the process, each ra-
diologist marked the identified lesions as nonnodule, nodule < 3
mm, and nodules >= 3 mm. Then, the challenge selected a total
of 1186 nodules >= 3 mm accepted by three or four radiologists
as the reference standard (i.e., ground truth). Annotations that
were not included in the reference standard (i.e., nonnodules,
nodules < 3 mm, and nodules annotated by merely one or two
radiologists) were referred as irrelevant findings.

In the challenge of false positive reduction track, the orga-
nizers provided a set of prescreened candidates to participants.
The candidates were figured out by three existing candidate de-
tection algorithms [3], [9], [10], and 1120 out of 1186 ground
truth nodules (sensitivity of 94.4%) were detected with 551 065
candidates.

B. Evaluations Metrics

The challenge evaluated detection results by measuring the
detection sensitivity and average false positive rate per scan.
A predicted candidate location was counted as a true positive
if it was located within the radius of a true nodule center. De-
tections of irrelevant findings were ignored (i.e., considered
as neither false positives nor true positives) in the evaluation.
The challenge organizers performed the free receiver operation
characteristic (FROC) analysis by setting different thresholds on
the raw prediction probabilities submitted by the participating
teams. The evaluation also computed the 95% confidence in-
terval using the bootstrapping [35]. A competition performance
metric (CPM) score [36], which was calculated as the average
sensitivity at seven predefined false positive rates: 1/8, 1/4,
1/2, 1, 2, 4, and 8 false positives per scan, was produced for
each algorithm. The tenfold cross validation on the dataset was
specified.

C. Results of the Challenge

There were seven teams participating in the ISBI challenge,
and the challenge results are listed in Table II. For the conve-
nience of description, we assign each team a number as listed
in the Table. All the seven teams employed deep CNNs for the
challenge, demonstrating the enormous influence of deep CNNs
on medical image analysis community nowadays. However, de-
spite of the 3-D nature of this detection task, five of the seven
teams utilized variants of 2-D CNNs based on multiview planes
(T1), orthogonal planes (T5), adjacent planes along a specific
direction (T6), or separate 2-D slices (T2 and T3). Only T4 and
our team (T7) employed 3-D CNNs.

It is observed that the CMP scores of T2, T3, and T5 were
far behind those of other competitors. T2 and T3 constructed
their 2-D models based on separate 2-D slices, where volumetric
contextual information cannot be sufficiently explored. The per-
formance of T2 was much better than that of T3 because T2
attempted to ensemble two 2-D CNNs to reduce bias of a single
network. On the other hand, TS5 employed orthogonal planes
to integrate volumetric spatial information in the 2-D model
training.
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Fig. 5. Examples of pulmonary nodule detection results of our frame-
work. Each patch is a representative transverse plane of one annotated
nodule and the p-value below the patch is its prediction probability from
our framework.
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Fig. 6. FROC curves of different architectures and their fusion result.

Dashed lines denote the 95% confidence interval estimated via boot-
strapping [35].

T1 and T6 achieved quite good results based on 2-D CNNs.
T1 trained multiple streams of 2-D CNNs with a set of patches
extracted from differently oriented planes [17]. Although this
scheme was still not able to fully leverage the 3-D spatial
information, it was an effective variant of 2-D CNNs for volu-
metric image analysis, especially when concerning its computa-
tional and storage efficiency. T6 resampled the CT scans into a
homogenous voxel size and combined three patches, including
the plane centering on the candidate point as well as two patches
located at 3 mm above and 3 mm below the candidate point. The
success of this scheme was also attributed to the inclusion of
more spatial contextual information in the trained model.

Like our approach, T4 also employed 3-D convolutional net-
works. They took 3-D patches of size 42 x 42 x 42 with dif-
ferent resolutions as input, and constructed networks consisting
of six convolutional layers with equal kernel size (3 x 3 x 3)

TABLE IlI
SENSITIVITIES OF MODELS UNDER DIFFERENT FALSE POSITIVE RATES

FP/Scan Archi-1 Archi-2 Archi-3 Fusion
8 0.909 0.920 0.918 0.922
4 0.879 0.905 0.897 0.907
2 0.846 0.881 0.866 0.879
1 0.777 0.842 0.814 0.848
0.5 0.681 0.747 0.750 0.815
0.25 0.580 0.604 0.651 0.737
0.125 0.459 0.473 0.546 0.677

and three max-pooling layers to down-sample feature volumes.
Although 3-D CNNs are considered being able to encode more
volumetric information for discriminating the true lung nodules,
the performance of T4 was slightly lower than that of T1 and
T6. The reasons for this could be that 1) they only used twofold
cross validation, much less than the specification of tenfold cross
validation, and hence the insufficient training data degraded the
power of 3-D CNNs, and 2) they employed the same input size
and kernel size in all three dimensions; however, as the third
dimension (Z dimension) of the CT scans had a relatively lower
resolution, if the input size and kernel size were the same in all
dimensions, the actual receptive field in the world space could be
incommensurate. Nevertheless, it outperformed the other three
2-D CNNs based methods (T2, T3, and T5) by a large margin,
demonstrating the effectiveness of the 3-D variant of CNNs in
volumetric detection tasks.

Our method achieved the highest CPM score in the challenge.
Different from T4, we designed smaller input size and kernel
sizes in the third dimension in order to proportionate the recep-
tive field across all directions. More importantly, we carefully
analyzed the diameter distribution of the nodules, and designed
aframework that fused multilevel spatial contextual information
to effectively resolve the conflicts between the large variations
of pulmonary modules and the limited training dataset, which
is one of the main challenges of employing deep CNNs in med-
ical image analysis applications. Fig. 5 presents examples of
successfully detected pulmonary nodules. It is observed that
our framework accurately identifies nodules of various sizes,
shapes, and locations with very high confidence.

D. Quantitative Analysis of Our Method

We further quantitatively analyzed the performance of the
three network architectures (i.e., Archi-1, Archi-2, Archi-3) in
our framework, which incorporated different levels of volumet-
ric contextual information surrounding the pulmonary nodules.
The FROC curves of each network as well as the fusion model
are presented in Fig. 6. It is observed that, for all of the three
individual networks, the detection sensitivities can reach beyond
90% under the false positive rate of 8 per scan, demonstrating
that the 3-D CNNSs are able to effectively extract discriminative
representations from volumetric CT scans for pulmonary nodule
detection.

Table IIT lists the detection sensitivities of different network
architectures at different false positive rates specified by the
challenge. All the three architectures can achieve a sensitivity
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Visualization of the learned 3-D kernels in the first layer of the networks incorporating different levels of contextual information. Each

5x5x3 kernel is embedded as three 5 x5 maps presented in a column. The rectangles with color cyan, green, and blue correspond to Archi-1,

Archi-2, and Archi-3, respectively.

of over 87% with 4 false positives per scan. Archi-2 even reached
detection sensitivity of 84% at 1 false positive rate. In order to
increase the difficulty of the challenge, several extremely low
false positive rates (0.5, 0.25, 0.125 false positives per scan)
were included in the challenge evaluation scheme, which is of
significance as it determines if a system can identify an ac-
ceptable percentage of modules with very few false positives,
and hence increase the automation level of current computer-
assisted diagnosis systems. In such cases, our multilevel contex-
tual fusion model demonstrated a strong capability in reducing
false positives while maintaining a satisfactory sensitivity. For
example, when confining 0.125 false positives per scan, Archi-
1, Archi-2, and Archi-3 obtained sensitivity of merely 45.9%,
47.3%, and 54.6%, respectively. Meanwhile, our fusion model
achieved a sensitivity of 67.7%, which exceeded that of the
Archi-1, Archi-2, and Archi-3 by 21.8%, 20.4%, and 13.1%,
respectively. It is worthwhile to note that, in Table II, although
our method achieved similar sensitivities to T1 and T6 at the
1 or above false positives per scan, we achieved much better
performance than these two teams under the relatively low false
positive rates (for example, 0.677 versus 0.655 of T6 and 0.636
of T1 at 0.125 false positives per scan). These experiments
demonstrated that the networks incorporating different levels of
contextual information can be complementary with each other
and the combination of them brings a boost in detection perfor-
mance.

IV. DISCUSSION

We present a novel 3-D CNNs based framework to effectively
reduce the false positive candidates in pulmonary nodule detec-
tion from volumetric CT scans. The success of the proposed
framework mainly lies in two aspects. First, compared with the
2-D CNNs, the 3-D CNNs, equipped with 3-D convolutions
and max-poolings, are naturally suitable for volumetric medi-
cal image processing. The 3-D networks are more proficient in
encoding 3-D spatial information, and therefore produce repre-
sentations with higher discrimination capability. Second, taking
advantages of the multilevel contextual networks, our method
achieves a more promising detection accuracy for clinical ap-
plication of automated pulmonary nodule detection system. The
contextual information is vital in the lung nodule detection task,
given their considerable variations in sizes, shapes, and loca-
tions. This assumption of relating detection performance to the
amount of contextual information is also true for 2-D CNNs

based methods. For example, the method of T1 [17] employed
multiview planes to input more spatial contextual information
to the networks and produced highlighted results among those
2-D CNNs based methods.

Instead of developing a whole pulmonary nodule detection
system, which usually integrates a candidate detector and a
false positive reducer, this paper emphasizes a special focus
on the false positive reduction component. This means that the
proposed approach is independent of the candidate screening
methods, and therefore can be combined with any candidate
detector. It is true that the final detection accuracy will also
depend on the performance of the candidate screening methods.
If the provided candidates come with a higher sensitivity, it is
promising to achieve better results with our framework.

Note that all the participating teams employed deep convo-
lutional networks in this challenge. We can see that the CNNSs,
being a dominant trend in natural image processing, pervade
quickly in the medical image analysis community. Even though
CNNs have been increasingly employed on medical imaging
applications, most works to date have been built on top of
2-D CNNs [37]. It was also the same case in this challenge,
where five out of seven participants utilized 2-D CNN vari-
ants. Successful training of 3-D CNNs is not easy, given its
larger parameter scales compared with 2-D CNNs. The lack
of sufficient training samples, due to expensive expert annota-
tion and privacy issues, is one of the main obstacles hinder-
ing the applications of 3-D CNNs in medical image analysis.
With the joint efforts of the whole community, recent chal-
lenges, including the LUNA 16, have been providing large-scale
benchmark datasets. This provides those data-driven methods
an opportunity to present outstanding performance in medical
applications. For this specific task of lung nodule detection, we
totally extracted 0.65 million samples to train the 3-D CNNs.
Fig. 7 visualizes the 64 learned 3-D convolutional kernels in the
first layer of the three network architectures. It is observed that
all the networks were effectively trained with filters presenting
similar patterns of various orientations, as the early layer is nor-
mally responsible for common low-level features, such as edges,
corners, and intensity gradients.

Some examples of pulmonary nodule detection results with
relatively low confidence are shown in Fig. 8. The left group
presents true nodules with either irregular shapes or ambiguous
boundaries. Nevertheless, our framework was able to retrieve
these challenging cases with a probability of higher than 0.75.
The right group shows true nodules coming with extremely
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Fig. 8. Examples of detection results with relatively low confidence.

Each patch is a representative transverse plane of one annotated nodule
and the p-value below the patch is its degree of suspicion figured out by
our framework.

small sizes and complex surrounding particularities. These cases
were underrepresented in the dataset and therefore classified by
our framework with a limited belief (between 0.3 and 0.4).
Special augmentations targeting these outlier cases might bring
a potential to increase the recognition performance.

V. CONCLUSION

In this paper, we present a 3-D CNNs based framework for
computer-aided detection of pulmonary nodules from volumet-
ric CT scans. We demonstrate the importance and effective-
ness of leveraging 3-D multilevel contextual information when
exploiting convolutional networks to detect lesions with large
variations and hard mimics from volumetric medical data. Ex-
perimental results in the LUNA16 challenge demonstrated im-
pressive efficacy of the proposed approach for the false positive
reduction task. In principle, the proposed framework is general
and can be easily extended to other object detection tasks in 3-D
medical images. Further investigations include evaluating it on
more clinical data and promoting it in clinical practice with the
aid of radiologists and surgeons.
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